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Even during visual fixation of a stationary target, our eyes perform
rather erratic miniature movements, which represent a random
walk. These ‘‘fixational’’ eye movements counteract perceptual
fading, a consequence of fast adaptation of the retinal receptor
systems to constant input. The most important contribution to
fixational eye movements is produced by microsaccades; however,
a specific function of microsaccades only recently has been found.
Here we show that the occurrence of microsaccades is correlated
with low retinal image slip �200 ms before microsaccade onset.
This result suggests that microsaccades are triggered dynamically,
in contrast to the current view that microsaccades are randomly
distributed in time characterized by their rate-of-occurrence of 1 to
2 per second. As a result of the dynamic triggering mechanism,
individual microsaccade rate can be predicted by the fractal di-
mension of trajectories. Finally, we propose a minimal computa-
tional model for the dynamic triggering of microsaccades.

random walks � visual fixation � eye movements � saccade detection

The human visual system rapidly adapts to stationary input,
which causes perceptual fading when the retinal image is

stabilized artificially in the experimental paradigm of retinal
stabilization (1, 2). Equipped with such a visual system optimized
for the detection of approaching predators or escaping prey, we
are unable to process fine details of completely stationary
objects. As a consequence, our eyes must produce miniature (or
‘‘fixational’’) eye movements to counteract perceptual fading by
actively refreshing retinal input for the optimal perception of
stationary objects (3, 4). Among the three distinct types of
fixational eye movements (drift, tremor, and microsaccades),
microsaccades represent the fastest component with the largest
amplitude (5–7) and occur at an average rate of 1 to 2 per second.
The trajectory generated by fixational eye movements is rather
erratic and has statistical properties of a random walk (8–10).
Embedded in slower movements (drift and tremor), microsac-
cades are ballistic jumps (�1°) of the eye (Fig. 1 Upper Left),
which represent roughly linear movement epoches. Here we
investigate the generating process for microsaccades, in partic-
ular, we are interested in the question whether the temporal
statistics of microsaccades represent a simple random process,
i.e., a Poisson process (11), or whether microsaccades are
triggered dynamically on demand by perceptual needs.

To find a specific role for microsaccades is a long-standing
research problem (7, 12). First, an early hypothesis was that the
function of microsaccades is to correct displacements in eye
position produced by drifts (1, 6, 13, 14). According to this view,
the probability of occurrence, direction, and amplitude of mic-
rosaccades must be correlated with the displacement generated
by drift. No reliable correlation has been found, however,
because microsaccades can be error-correcting and, at times,
error-producing (8, 13). One solution to this problem might be
related to a time-scale separation in microsaccade dynamics: On
a short time scale, microsaccades are mainly error-producing
(i.e., microsaccade enhance retinal image slip), whereas on a
long time scale, microsaccades correct errors and help to main-
tain the current fixation position (8). Second, during high-acuity
observational tasks like threading a needle, participants natu-
rally suppressed microsaccades without training (15, 16). More-
over, trained participants were able to suppress their microsac-

cades for several seconds without fading of the image (17). As a
consequence of these findings, in 1980, Kowler and Steinman
(18) concluded that ‘‘microsaccades serve no useful purpose’’
and represent an ‘‘evolutionary puzzle.’’

Recently, it was demonstrated that microsaccades enhance the
visibility of a peripheral stimulus (19) by using the paradigm of
Troxler fading. This important finding represents a direct link
between microsaccade activity and visual perception. Having
identified such a function for perception, microsaccades still
might be generated by a random process; however, a dynamical
triggering mechanism is a potential alternative as a generating
process. We carried out two experiments to investigate these
alternative hypotheses.

Results
Given the basic function of fixational eye movements to coun-
teract retinal fatigue by producing retinal image slip, we inves-
tigated whether microsaccades are triggered dynamically, when-
ever slow movements (drift and tremor) might be ineffective to
generate sufficient retinal image slip. In two experiments, we
monitored fixational eye movements during a simple fixation
task. Human participants were asked to fixate a small dot on a
computer display (see Methods). In experiment (Exp.) 1, par-
ticipants performed 100 trials with a duration of 3 s; in Exp. 2,
participants performed 30 trials with a duration of 20 s.

Detection of Microsaccades. Microsaccades were detected by using
an improved version of a velocity-based algorithm proposed
earlier (20). The time series of fixation positions was transformed
into 2D velocity space (Fig. 1 Upper Right). Separate thresholds
were computed for horizontal and vertical velocities, constitut-
ing an elliptic threshold in 2D velocity space. Thresholds were
relative to the noise level, calculated as � � 5 multiples of a
median-based SD estimator. Because microsaccades are ballistic
movements with the same kinematic properties as normal sac-
cades (21), there is a high correlation (r � 0.92; P � 10�6)
between microsaccade amplitude and peak velocity (Fig. 1 Lower
Left) in double-logarithmic representation known as the main
sequence (22).

To test the detection algorithm against noise, we computed
surrogate time series by constrained random-shuffling of the
original velocity samples (23) for all trials of Exp. 1. We varied
the detection threshold parameter � of the algorithm and
computed the average microsaccade rate over all trials as a
function of � (Fig. 1 Lower Right). Two main findings emphasize
that our algorithm reliably identified microsaccades from fixa-
tional eye-movement trajectories. First, the algorithm detected
more microsaccades in the original data than in the surrogate
data over a broad range of threshold values (� � 3 to � � 15).
Second, the difference between the rates obtained for original
data and surrogates exhibits a maximum between � � 5 and 7,
which represents a maximum in the signal-to-noise ratio for the
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algorithm. We conclude that microsaccades can be distinguished
from correlated noise by our algorithm. For further analyses
reported here, we fix � at a value of 5.

Distribution of Intermicrosaccade Intervals (IMSIs). The average
microsaccade rate across participants was slightly �1 per second
(1.13 s�1 in Exp. 1; 1.21 s�1 in Exp. 2). To compute intermic-
rosaccade intervals, only trials containing at least two microsac-
cades were considered. We observed more than one microsac-
cade in 897 of all 2,360 trials (or 38%) in Exp. 1, whereas we
found more than one microsaccade in 375 of all 503 trials (or
75%) in Exp. 2. These trials were used to compute IMSIs (2,119
IMSIs in Exp. 1; 9,898 IMSIs in Exp. 2). In Exp. 1, a plot of the
relative frequencies of IMSIs (Fig. 2 Left) indicates an exponen-

tial distribution (see Fig. 2 Left Inset with the same data plotted
on a logarithmic vertical axis). An exponential distribution is
compatible with the assumption of an underlying Poisson process
(11) with constant probability over time for the occurrence of
microsaccades. Thus, for the data obtained from Exp. 1, a
probabilistic model of microsaccade generation seems adequate.
In Exp. 2, the distribution of IMSIs again showed an exponential
tail (see Fig. 2 Right Inset); however, there is a pronounced peak
in the distribution of IMSIs at an interval duration of �500 ms.
The observation of such a peak in the distribution of IMSIs,
which indicates a periodic component of the generating process,
can be interpreted as a first hint to an underlying dynamic
mechanism of microsaccade triggering, which we will investigate
by using a minimal stochastic model (see below).

Analysis of Retinal Image Slip. To characterize the amount of
retinal image slip produced by fixational eye movements, we
applied a box-counting approach, where the recorded eye tra-
jectories were covered by boxes with a linear dimension of � �
0.01° (Fig. 3 Upper Left), corresponding to approximately the
diameter of the cone receptive fields (24). We used the number
of boxes Nb needed to cover the trajectory in a time window of
50 ms as a quantitative measure of retinal image slip. To
investigate a possible correlation of this box-count measure with
the later occurrence of microsaccades, we computed the value of
Nb at different time lags before microsaccade onset, where the
window of analysis was centered around the lag value (given on

Fig. 1. Fixational eye movements and microsaccades. (Upper Left) Miniature
eye movements recorded in Exp. 1 during a fixation of 3 s. Microsaccades are
indicated by red color, where the last three data samples are highlighted by
the bold line. (Upper Right) Same trajectory plotted in 2D velocity space.
Independent detection thresholds for horizontal and vertical components (5
SDs) constitute an elliptic threshold criterion in 2D (green line). (Lower Left)
Peak velocity and microsaccade amplitude are highly correlated, i.e., micro-
saccades follow the ‘‘main sequence.’’ (Lower Right) Average microsaccade
rate computed from all trials of Exp. 1 by our algorithm as a function of the
detection threshold � (blue line). A lower average microsaccade rate is com-
puted for surrogate data (red line), where the optimal signal-to-noise ratio is
represented by the maximum of the difference of the two rates (black line).

Fig. 2. Distributions of IMSIs. (Left) In Exp. 1, we observed an exponential
distribution of IMSIs, which is demonstrated by the semilogarithmic plot given
by Inset. (Right) In Exp. 2, IMSIs exhibited a more peaked distribution with a
local maximum of �500 ms and an exponentially decaying tail.

Fig. 3. Box-counting procedure and retinal image slip before microsaccades.
(Upper Left) In the box-counting procedure, the number Nb of boxes with a
linear dimension � � 0.01° needed to cover the graph of the trajectory is
calculated as a measure of local retinal image slip. (Upper Right) In Exp. 1, the
local box count Nb in time windows of 50 ms at different lags relative to
microsaccade onset shows a significant drop at ��400 to �300 ms. (Lower
Left) In Exp. 2, the same analysis yielded a decreased box count over a broad
range of lags with a minimum value ��200 ms before microsaccade onset.
(Lower Right) Interindividual differences in the box-count analysis. Box-count
measures from the analysis with randomized saccade-onset times were sub-
tracted from the box-count measures for original data (green curves represent
results for individual participants). The negative mean values (black line with
error bars representing standard errors) indicate a decreased box count before
microsaccades for 15 of 17 participants and for a range of lags between �400
to �200 ms.
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the horizontal axis of Fig. 3 Upper Right and Lower Left). In Exp.
1, we find a decrease of the box-count measure ��400 ms to
�300 ms before microsaccade onset (Fig. 3 Upper Right, red lines
with bars representing standard errors). In Exp. 2, the decrease
covers a broad range of lag between �500 ms and �100 ms
before microsaccade onset (Fig. 3 Lower Left, red lines) showing
a minimum value ��200 ms before microsaccade onset. The
results indicate that low retinal image slip is correlated with the
occurrence of microsaccades as a precursory phenomenon.

Our previous finding that a sudden display change induces a
strong modulation of the microsaccades rate (20), which typically
causes a transient over several seconds, could explain the weaker
effects observed in Exp. 1, where the total fixation duration is
only approximately one-seventh of the duration used in Exp. 2.
Note also that there is an increased box count just before
microsaccade onset, which is caused by a temporal jitter of the
microsaccade onset times due to noise in the detection algo-
rithm. The box-count estimation was based on epochs, which did
not contain microsaccades to rule out any influence from
previous microsaccades (consequently, the standard error in-
creases with the delay due to a decreasing number of epochs
available for the analysis).

To test the observed effect of decreased box count before
microsaccades statistically, Monte Carlo simulations with ran-
domly distributed microsaccade onset times were performed,
which provided an estimate for fluctuations in the baseline of the
box-count measure (Fig. 3 Upper Right and Lower Left, black
lines). The box count Nb is significantly lower for the original
data than for the random shuffled data (left-tailed t test; Exp. 1,
P � 0.005 for a time lag of 400 � 25 ms; Exp. 2, P � 0.001 for
the same lag values). For Exp. 2, we carried out an analysis of
interindividual differences, where the results for the difference
between box count in original data and the value obtained from
randomized saccade onset times were compared for participants
(Fig. 3 Lower Right). Here, the values of the difference were
negative (indicating decreased retinal image slip) for 15 from 17
participants (or 88%) at lag values between �200 and �400 ms.
In a repeated-measures ANOVA with original data and ran-
domized saccades as within-subject factor at a lag of �325 ms
(within a centered window of 100 ms), differences were highly
significant [F (1, 16) � 39.5; P � 0.001]. Because microsaccades
are correlated with low values of Nb, insufficient retinal image
slip might trigger the preparation of a microsaccade, which is
executed with a rather broad latency distribution between �500
and �200 ms.

The estimate of the average latency for microsaccades is in
agreement with saccadic reaction times to suddenly appearing
stimuli. Activation in the superior colliculus is evoked by visual
stimuli after 40 ms (25), whereas electrical stimulation of the
superior colliculus generates a saccade after only 20 ms (26).
Thus, saccadic responses with typical latencies �200 ms are not
restricted by the physiological transmissions delays (60 ms).
Instead, sensory accumulation processes (27–29) are responsible
for the observed long latencies.

A Dynamical Model of Microsaccade Triggering. A minimal model
for the generation of microsaccades can be built around the
assumption that the estimation of retinal image slip is based on
a sensory accumulator process. Because all sensory processes
operate on noisy environmental signals, realistic models are
inherently stochastic (30). For simplicity, we used a long real-
ization (n � 300,000 data points) of a random walk with
uncorrelated Gaussian-distributed velocity samples (Fig. 4 Left
shows a representative epoch of 900 data points of the simulated
trajectory).

The model was implemented in three steps. First, the same
box-counting procedure was applied to the simulated data as was
applied to the original data (see Fig. 3 Upper Left). Second, we

assumed that evidence for low retinal slip accumulates over time,
where a counter is incremented by one whenever the box count
is smaller than the average box count decreased by 2 SDs. For
all other cases, the counter value is kept constant. Thus, the
accumulator process yields a monotonically increasing counter
value as illustrated in Fig. 4 Right for the first 1,500 data points
of the simulated random walk. Third, we implemented the rule
that a microsaccade is triggered (indicated by the arrows in Fig.
4 Right) whenever a counter value of � is reached (in Fig. 4 Right,
we applied � � 25).

For a low value of �, we obtained an exponential distribution
of IMSIs (Fig. 5 Left with � � 10), whereas for a high value of
�, the distribution of IMSIs shows a clear peak (Fig. 5 Right with
� � 20). Thus, our minimal model can reproduce the qualitative
features of the distributions of IMSIs obtained from Exp.1 and
Exp. 2. We conclude that a dynamical mechanism for triggering
of microsaccades is in good agreement with experimental data.

Fractal Dimension Analysis. The observed interindividual variabil-
ity of microsaccade rate between participants poses a problem
for any potential mechanism of the generation of microsaccades.
In Exp. 1, the microsaccade rate varied between a minimum of
0.31 s�1 and a maximum of 2.04 s�1 (mean value: 1.13 s�1).
Similar values were obtained from Exp. 2, where microsaccade
rate was distributed over a range from 0.19 s�1 to 2.72 s�1 (mean
value: 1.21 s�1). If microsaccades are crucial for the generation
of sufficient retinal image slip, why do we observe such a broad
range of microsaccade rates across participants? Based on the
above mechanism of dynamic triggering of microsaccades, the
source of this variation is likely to be found in a related variation
of the slow movement components (drift and tremor). Using the

Fig. 4. A sensory accumulator model of microsaccade generation. (Left) A
segment of 900 data points from simulated random walk used for the analysis
(see Methods). (Right) The temporal evolution of the counter value in the
accumulator model. In the illustration, a microsaccade is triggered whenever
the counter passes the threshold after a distance of � � 25 counts (indicated
by arrows).

Fig. 5. Distributions of IMSIs obtained from model simulations. (Left) For � �
10, the model generates exponentially distributed IMSIs, which is qualitatively
in good agreement with results from Exp. 1. (Right) For � � 20, the distribution
of IMSIs shows a pronounced peak similar to the results from Exp. 2.
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box-counting approach, we noticed that variation of the length
scale � yields a power law for the box count Nb as a function of
�, Nb(�) � ��fD, indicating statistical self-similarity (31), where fD
is the fractal (or box-counting) dimension of the trajectory (Fig.
6 Left). To exclude possible influences from microsaccades, we
removed microsaccades from the trajectories (see Methods) and
calculated the average fractal dimension of trajectories from all
trials of a participant. The higher the fractal dimension of the
trajectory, the more space filling is the resulting curve. When
plotting the average fractal dimension fD against microsaccade
rate m for all participants of Exp. 2 (Fig. 6 Right), we observed
a significant negative correlation with the rate of microsaccades
(r � �0.72; P � 0.005). In Exp. 1, we also obtained a significant
negative correlation (r � �0.40; P � 0.05); however, the results
from Exp. 2 are probably more reliable because of the longer
time series. Because a high fractal dimension is related to a low
microsaccade rate, microsaccades occur more frequently when
the area covered by the slow movements is small. Therefore, the
correlation might be caused by the dynamic mechanism postu-
lated above.

Discussion
Our study was motivated by two different possible mechanisms
for the generation of microsaccades: First, the generation of
microsaccades might represent a purely stochastic process with
constant probability over time (i.e., a Poisson process with
exponentially distributed IMSIs). Second, microsaccades might
be generated dynamically in response to low retinal image slip to
counteract retinal fatigue. Using a box-counting procedure, we
found support for the latter hypothesis in data from two exper-
iments. Before microsaccade onset times, retinal image slip was
significantly decreased compared with randomly chosen epochs
of the trajectories. The observed latency between low retinal
image slip and microsaccade onset ranged roughly between 200
and 500 ms. Thus, typical saccadic reaction times provide a lower
bound for the generating process, which is compatible with a
dynamical triggering mechanism based on a sensory accumulator
model. We implemented a minimal computational model of such
an accumulator model to demonstrate that a dynamical trigger-
ing mechanism can account for the experimentally observed
distributions of IMSIs. We expect that there are additional
processes modulating the rate of microsaccades, of course, but
because our model basically controls microsaccade rate, such
additional processes may coexist with the principles imple-
mented in our model.

If microsaccades are triggered dynamically in response to
statistical properties of retinal image slip produced by the drift
component of fixational eye movements, then the empirically
observed variation in microsaccade rate across participants
should be caused by interindividual variations of the statistical
properties of the drift. After removing microsaccades from the
trajectories, we carried out an analysis of the fractal dimension
of the resulting drift trajectory. The higher the fractal dimension
value is, the more space filling is the resulting trajectory.
Therefore, we expected a lower microsaccade rate for partici-
pants showing a higher fractal dimension. We obtained the
hypothesized negative correlation between microsaccade rate
and fractal dimension, supporting our hypothesis that drift
epochs with low fractal dimension did not provide sufficient
retinal image slip. As a consequence, participants with a low
fractal dimension of the drift component of fixational eye
movements generated a high microsaccade rate.

An interesting problem for further research is related to the
exact mechanisms of microsaccade triggering. The simplest
dynamical principle is based on monitoring the oculomotor
system itself. In this case, our box-count measure would be very
close to the physiological mechanism. An alternative mechanism
is, however, based on the perceptual needs, so that a loop
involving the visual stream would be an important component of
the control circuitry for the generation of microsaccades.

Using statistical analyses of the eye’s random walk, we previ-
ously have uncovered a time scale separation between error-
production and error-correction of microsaccades (8): On a
short time scale (�20 ms), microsaccades enhance retinal image
slip by inducing persistent correlations, so that the eye maintains
its current movement direction, whereas on a longer time scale
(�40 ms), microsaccades help to prevent the loss of current
fixation position by reversing current movement direction due to
antipersistent correlations. These findings suggest that both
large fixation errors or small retinal image motion are candidate
mechanisms for triggering microsaccades if microsaccades do
not follow simple Poisson statistics. The current results suggest
that insufficient retinal image slip is one signal for the generation
of microsaccades.

Recently, it was observed that microsaccades can induce
transitions from fading to intensifying percepts of peripheral
stimuli during Troxler fading (19). This important finding rep-
resents a direct link between oculomotor behavior and visual
perception. Given such a critical function of microsaccades for
perception, a dynamical triggering of microsaccades seems
highly plausible.

More generally, new findings in different domains of research
emphasize the relevance of microsaccades to oculomotor con-
trol, visual perception, and attention. First, it has been found that
microsaccades modulate neural activity in several areas along
the visual stream, including excitatory-bursting activity in ma-
caque area V1 (32) and also in the LGN (33). Second, micro-
saccades are modulated by visual attention and might provide a
tool to map the time course of visual attention in attentional
cuing paradigms (refs. 20 and 34–36; for an overview, see
ref. 37).

Taken together with the recent finding that microsaccades
enhance the perception of peripheral stimuli (19), our results
demonstrate that vision is critically based on motor behavior, in
contrast to the dominant view that human movements are based
on visual perception. Finally, we expect that our approach to the
investigation of fixational eye movements and microsaccades
proposed here will be an interesting tool for the analysis of data
obtained from more dynamic task like reading (38) or visual
search (39).

Fig. 6. Fractal dimension and microsaccade rate. (Left) To characterize the
geometry of the trajectories, we computed the number of boxes Nb as a
function of the linear dimension �. The fractal dimension can be read off from
the exponent of the resulting power law. (Right) The average fractal dimen-
sion (computed from all trials of a participant) is negatively correlated with the
average microsaccade rate. Each data point represents data from one partic-
ipant. The fractal dimension was computed for the drift component of fixa-
tional eye movements, i.e., after removing all microsaccades.
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Methods
Participants and Task. Participants were required to fixate a small
stimulus (black square on white background, 3 � 3 pixels on a
computer display) with spatial extent of 0.12° (or 7.2 arc min).
All participants were instructed to keep their eyes on the fixation
spot and to prevent eye blinks. Participants received a payment
of 5 euros.
Experiment 1. We asked 29 participants to perform 100 trials with
a duration of 3 s.
Experiment 2. Within the same fixation paradigm, 17 participants
(students of the University of Potsdam) were asked to perform 30
trials with a trial duration of 20 s. Because of the long fixation
duration, the prevention of massive loss of trials due to blinks was
critical. We implemented an automatic screening for missing data
samples during the experiment. If missing samples were detected,
trials were immediately aborted and then restarted. Participants
were informed on this procedure in advance and that eye blinks
should be prevented. Because of the unnaturally long fixations, we
presented photographs (10 s each) between trials to give partici-
pants the possibility to produce inspection saccades and eye blinks.

Eye-Movement Recording and Data Preprocessing. Eye movements
were recorded by using an EyeLink-II system (SR Research,
Osgoode, ON, Canada) with a sampling rate of 500 Hz and an
instrument spatial resolution of 0.01°. Participants’ head move-
ments were minimized by using a chin rest (and an additional
biteboard in Exp.1). Raw data were smoothed by using a running
average on velocity samples to suppress high-frequency noise.
Velocities were computed from raw data samples x�n according
to a moving average procedure (20),

v�n �
x�n	2 � x�n	1 � x�n�1 � x�n�2

6
t
, [1]

where 
t � 500 ms is the sampling interval. To suppress noise,
position values were reconstructed by performing a cumulative
sum, i.e.,

x�n � x�o � 
t � �
i�1

n

v�n. [2]

Experiment 1. During preprocessing, 540 of 2,900 trials (or 19%)
were discarded because of missing data samples due to eye blinks
or saccades with amplitudes �1°.
Experiment 2. Missing data samples due to eye blinks were
detected during the experiment. Therefore, during preprocess-
ing, only 7 of 510 trials (or 1.4%) were discarded, because they
contained saccades with amplitudes �1°.

Microsaccade Detection. Microsaccades were detected in 2D ve-
locity space by using thresholds for peak velocity and a minimum
duration, implemented as an improved version of an algorithm
proposed earlier (20). We used relative thresholds, separately
computed for horizontal (�x) and vertical (�y) components in
units of median-based SDs, �x,y � ���x,y, where �x,y

2 � �(vx,y �
�vx,y�)2�. Thus, an elliptic threshold in 2D velocity space resulted

(Fig. 1 Upper Right for � � 5). Additionally, a minimal duration
of three data samples (or 6 ms) was applied; i.e., a microsaccade
was detected only if three or more data samples were outside the
ellipse defined by the horizontal and vertical threshold. Finally,
we considered only binocular microsaccades, which we defined
as microsaccades detected in both eyes with a temporal overlap
of at least one data sample. For clusters consisting of microsac-
cades with multiple overlapping relations, we selected the largest
microsaccades from both eyes within the cluster.

Testing the Algorithm Against Noise. The reliability of the proce-
dures for microsaccade detection were evaluated by numerical
simulations by using phase-randomized amplitude-adjusted sur-
rogate data (23). For each trial from Exp. 1, we computed the
corresponding time series of velocities (see above). For velocity
series, surrogate data were obtained by constrained random
shuffling of the original time series (i.e., randomization of the
phase of the Fourier spectrum and remapping onto the original
velocity samples). Therefore, the distribution of velocity values
was exactly the same as in the original data, and the autocor-
relation function of the original velocity series was approximated
by the surrogate data. The performance of the algorithm showed
that more microsaccades were detected in the original data than
in the surrogate data over a broad range of detection threshold
parameter values � (Fig. 1 Lower Right).

Removing Microsaccades. To remove microsaccades from the
experimentally observed trajectories, first, we computed the
increments of the trajectory, second, we removed all increments
corresponding to microsaccades, and, third, we reconstructed
the trajectory by performing a cumulative sum (9).

Model Simulations. Velocities were implemented as uncorrelated
Gaussian-distributed random variables with statistically inde-
pendent horizontal (vx) and vertical components (vy) and a
standard deviation of 0.015°�s. A sample trajectory of n �
300,000 data points was generated for the box-counting analysis
(Fig. 4 Left, showing a segment of 900 data points of the
trajectory). According to the model, low retinal image slip is
detected by an accumulator process. First, we computed the box
count (� � 0.01°) by using a running average of 25 data points.
Second, whenever the box count dropped to values �2 SDs
below the average box count, the counter of the accumulator
process was increased by one unit (otherwise the counter value
remained unchanged). The resulting counter time series of the
accumulator process is shown in Fig. 4 Right. Third, microsac-
cade were triggered, when a threshold of � steps were reached
in the counter (in Fig. 4 Right we used � � 25). For a value of
� � 10, we obtain an exponential distribution of IMSIs, whereas
there is a pronounced peak in the distribution of for higher
values of the threshold �.

We thank Petra Grüttner for research assistance (Exp. 1) and Reinhold
Kliegl, Susana Martinez-Conde, and an anonymous reviewer for valu-
able comments on the manuscript. This work was supported by Deutsche
Forschungsgemeinschaft Grant KL 955-3�3.

1. Ditchburn, R. W. & Ginsborg, B. L. (1952) Nature 170, 36–37.
2. Riggs, L. A., Ratliff, F., Cornsweet, J. C. & Cornsweet, T. N. (1953) J. Opt. Soc.

Am. 43, 495–501.
3. Ratliff, F. & Riggs, L. A. (1950) J. Exp. Psychol. 40, 687–701.
4. Wade, N. J. & Tatler, B. W. (2005) The Moving Tablet of the Eye (Oxford Univ.

Press, Oxford).
5. Carpenter, R. H. S. (1988) Movements of the Eyes (Pion, London).
6. Yarbus, A. L. (1967) Eye Movements and Vision (Plenum, New York).
7. Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004) Nat. Rev. Neurosci.

5, 229–240.
8. Engbert, R. & Kliegl, R. (2004) Psychol. Sci. 15, 413–435.

9. Klafter, J., Shlesinger, M. F. & Zumofen, G. (1996) Phys. Today 49, 33–39.
10. Shlesinger, M. F. (2001) Nature 411, 641.
11. Cox, D. R. & Miller, H. D. (1965) The Theory of Stochastic Processes (Methuen,

London).
12. Engbert, R. (2006) Neuron 49, 168–170.
13. Nachmias, J. (1959) J. Opt. Soc. Am. 49, 901–908.
14. Cornsweet, T. N. (1956) J. Opt. Soc. Am. 46, 987–993.
15. Winterson, B. J. & Collewijn, H. (1976) Vision Res. 16, 1387–1390.
16. Bridgeman, B. & Palca, J. (1980) Vision Res. 20, 813–817.
17. Steinman, R. M., Cunitz, R. J., Timberlake, G. T. & Herman, M. (1967) Science

155, 1577–1579.

7196 � www.pnas.org�cgi�doi�10.1073�pnas.0509557103 Engbert and Mergenthaler



18. Kowler, E. & Steinman, R. M. (1980) Vision Res. 20, 273–276.
19. Martinez-Conde, S., Macknik, S. L., Troncoso, X. G. & Dyar, T. A. (2006)

Neuron 49, 297–305.
20. Engbert, R. & Kliegl, R. (2003) Vision Res. 43, 1035–1045.
21. Zuber, B. L., Stark, L. & Cook, G. (1965) Science 150, 1459–1460.
22. Bahill, A. T., Adler, D. & Stark, L. (1975) Math. Biosci. 24, 191–204.
23. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B. & Farmer, J. D. (1992)

Physica D 58, 77–94.
24. Ölveczky, B. P., Baccus, S. A. & Meister, M. (2003) Nature 423, 401–408.
25. Guitton, D. (1992) in Eye Movements, ed. Carpenter, R. H. S. (McMillan,

London), pp. 244–276.
26. Sparks, D. L. (1986) Physiol. Rev. 66, 118–171.
27. Carpenter, R. H. S. & Williams, M. L. L. (1995) Nature 377, 59–62.
28. Reddi, B. A. J. & Carpenter, R. H. S. (2001) Nat. Neurosci. 3, 827–830.

29. Ratcliff, R. (2001) Nat. Neurosci. 4, 336.
30. Ratcliff, R. (1978) Psychol. Rev. 85, 59–108.
31. Mandelbrot, B. B. (1967) Science 155, 636–638.
32. Martinez-Conde, S., Macknik, S. L. & Hubel, D. H. (2000) Nat. Neurosci. 3,

251–258.
33. Martinez-Conde, S., Macknik, S. L. & Hubel, D. H. (2002) Proc. Natl. Acad.

Sci. USA 99, 13920–13925.
34. Hafed, Z. M. & Clark, J. J. (2002) Vision Res. 42, 2533–2545.
35. Laubrock, J., Engbert, R. & Kliegl, R. (2005) Vision Res. 45, 721–730.
36. Rolfs, M., Engbert, R. & Kliegl, R. (2005) Exp. Brain Res. 166, 427–439.
37. Engbert, R. (2006) Prog. Brain Res., in press.
38. Engbert, R., Nuthmann, A., Richter, E. & Kliegl, R. (2005) Psychol. Rev. 112,

777–813.
39. Gilchrist, I. D. & Harvey, M. (2000) Curr. Biol. 10, 1209–1212.

Engbert and Mergenthaler PNAS � May 2, 2006 � vol. 103 � no. 18 � 7197

PS
YC

H
O

LO
G

Y


